Polynomial chaos uncertainty quantification of a return-map model of cardiac APD restitution
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PC UQ results comparable to Monte Carlo

Introduction Classical

e Models of cardiac dynamics are used to study mechanisms of
cardiac arrhythmia and simulate effects of drugs or diseases
to see if they cause arrhythmia.

e Model parameters are usually derived from experimental mea-
surements — so they have uncertainty.

e Uncertainty quantification (UQ) propagates uncertainty to
model outputs — important for interpreting results. But UQ
can be computationally intensive.

e We applied polynomial chaos (PC) UQ to the dynamics of a
return-map model of cardiac action potential duration (APD)
restitution. Results were similar to large-sample Monte Carlo

(MC) UQ, in 95% less computational time.

Return-map model of APD restitution |1

Cardiac cell responds to electrical stimulus by producing action potential

(AP).
—A_ D —TA 51 APD: AP duration (ms). A, =n'" APD.
T DI: diastolic interval (ms). D, = n'™ DI.
BCL (B): basic cycle length, period between stimuli
;>E (ms). For constant B, B = A,,+ D,,. (Control param-
—Q>
BCL time  eter.)

Figure 1 APD restitution: A,+1 depends on A,, Dy, .. ..

Model: APD restitution function as return map with 4 uncertain parameters
p. Discontinuity: if D,, shorter than critical value D.,,;,(p), no APD will be
elicited [1].

Dn < D mzn(p)

p and form of ® derived from experimental measurements.
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APD dynamics summarized by biturcation diagrams

e

I'hree bifurcation diagram types were observed as p was varied:
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Figure 2: Bifurcation diagrams (fixed point A* vs. B). Solid (dotted) line: A”*
stable (unstable). No line: A* does not exist. As B decreases, (a): A" loses
stability at B = By, regains stability at B = B,es, ceases to exist at B = B .
(b): A™ loses stability at B = By, ceases to exist at B = By (¢): A" stable until
1t ceases to exist at B = Bcy:.

Dynamics were characterized by model outputs:
e Fixed point APD: A*(p; B)
e Existence of stable fixed point: binary response variable z(p; B).
2(p; B) =1 if A*(p; B) exists and is stable, z(p; B) = 0 otherwise
o Bifurcation BCLs: Bpif(p), Bres(P), Beut(D)

PC UQ for continuous model outputs 2]

Given: model with N4, independent uncertain parameters p represented by
random vector £ with joint PDF p(§), (optional) control parameter B (no

uncertainty), output Y (&; B) varying smoothly over support of p(&):
P

= Z%(B)‘I’k(f) (2)
k=0

Ur: Ngm-dimensional polynomial basis orthogonal with respect to p(§),

formed as product of 1-d polynomials of max order IV,,4.

Y Y (& B)

UQ: By orthogonality, from (2):

A

Mean(Y) = cg (3a)
P
Variance(Y) = » ¢ (U7) (3b)
k=1
 (YV,) —  quadrature-estimated
k= (U#) — analytical for most Wy (4)

To find cg, evaluate Y at N, = (2N,,q + 1)Vam € quadrature nodes.

For this model:

N m
() ~ TTY%" Normal (s, )
Ndz'm:47 Nord:4; Nq

1; = nominal parameter value, o; = 0.1,

= 6001

Modified PC UQ for discontinuous model outputs |3]

Model discontinuity: Some outputs do not exist over full support

of p(§).

e Transform subdomain of € where Y is continuous to 1 ~ Unif|0, 1]Vdim,
using Rosenblatt transformation, numerically estimated using subset of
quadrature nodes on subdomain.

e Choose ¥ (n) to be Legendre, orthogonal with respect to Unif[0, 1]V dm,

e Estimate cx(B) by Bayesian inference sampling, using subset of existing
model evaluations on subdomain and transformed nodes.

Requires additional computational time, but no new model evaluations.

Computational time: PC vs. Monte Carlo
PC UQ: Model outputs were evaluated at N, = 6561 quadrature nodes for

B = 1000, 999, ..., 10 ms. Computational time: 1500 s.
Output PC method Additional computational time
A*(&;B), B > 428 ms Classical <1ls
A*(&;B), B <427 ms Modified 7930 s
2(&; B) ok < 1s
Byif(€) Modified 50 s
Bes(€) Modified 50 s
Boyut(€) Classical <L 1s
Total additional computational time: 8030 s

** PC inappropriate for binary variable z(&; B). (z) = probability that a
stable fixed point exists, quadrature-estimated at each BCL.

Monte Carlo (MC) UQ: Model outputs evaluated at 1 x 10° & sample

points for B = 1000, 999, ...,10 ms.
PC total computational time: =~ 2.7 h
MC total computational time: ~ 65 h
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Figure 3: Fixed point APD vs. BCL, Figure 4: Probability that stable

mean (solid lines) £ 1 standard devi-
ation (dotted lines).

fixed point exists vs. BCL.

Table 1: Bifurcation BClLs,
mean + standard deviation (ms)

PC MC
By 389.5 + 98.1 387.9 + 80.3

e (lassical PC: mean and standard devi-
ation estimates almost identical to MC.

e Modified PC: mean estimates nearly
identical to MC; standard deviation es-

timates generally 10-30% greater than Bres 127.4 £ 23.5 137.6 £ 31.1
MC. Boy 33.2 6.1 28.5 = 5.6
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Probability that stable fixed point
exists indicated by color at each BCL (see colorbar, center panel). Uncertainty in
fixed point APD indicated by vertical width of colored area at each BCL.
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Figure 5: Probabilistic bifurcation diagrams.

Conclusions

e Polynomial chaos is a computationally efficient UQ method for
the dynamics of a return-map model of cardiac APD response.

e Modified PC UQ handles discontinuous model outputs efficiently,
with relatively small increase in estimated standard deviation of
model output compared to large-sample Monte Carlo UQ).

e UQ of model dynamics provides a measure of probability of sta-
bility loss, which can inform the use of models to understand and
predict cardiac arrhythmia.
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